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Abstract 

The cemputer simulation of the processes proceeding under intensive mechanical action is carried out for two-dimensional 
Lennard--Jones crystals. The time and deformation dependencies of strain tensor, energy and quantity of structure disruptions is 
presented for different load intensities. It is shown that the energy absorbed by the crystal under macroscopic mechanical action 
is released in local regions that are several Angstrom-sized. The plastic flow occurs through dividing the initial structure into 
regions in which the atomic motion is to be correlated. 
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1. Introduction 

We present the results of computer modeling of 
plastic deformation of the model system composed of 
Lennard-Jones type particles. The problem of de- 
tailed knowledge of atomic motions under conditions 
of mechanical action arises from experimental data 
obtained in mechanical alloying, mechanical activation 
and other ways of mechanical treatment of solid [1,2]. 

The mechanical alloying proceeds at about 300 K 
and the main problem arising is an extremely fast 
atomic motion in the substance under action. Thus, the 
effectiw~ interdiffusion coefficient in the alloying met- 
als is about 10-9-10 -1l m 2 s -1 [3]. 

However, this kind of motion is different from 
thermally activated diffusion. If the diffusion causes 
full amorphisation of the substance, the atomic mo- 
tions activated under mechanical treatment could 
leave the structure without any changes or cause 
formation of the new structures. 

For example, the mechanical treatment of the ma- 
terials with the simplest structure such as the close- 
packed metals or ionic salts (e.g. NaCI) leads to the 
formation of point and linear defects without any 
changes in common structure. But for the more 
complicated structures such as complex oxides (perov- 
skites or spinels) mechanical treatment generates new 
types of structure; for example, in Ref. [4] was shown 
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the formation of the metastable cubic phase 
(Y0.33Ba0.67)CuO3_x during the treatment of the mix- 
ture of Y203, BaO 2, CuO oxides or YBa2Cu307_ x. 

In this case the type of the main structural element 
defines the type of possible structure changes during 
the mechanical action. If one takes the close-packing 
anion sublattice with small cations in interstitial (fer- 
rite-spinels) one can observe the formation of close- 
packing sublattice defects and changes in cation dis- 
tributions between octa- and tetra- sites. 

In the case of anion-cation close packing (for 
example perovskites) the mechanical action may lead 
to the full amorphisation of the material. Therewith 
the oxygen polyhedral forms random close packing 
(similar to Bernal's model) [5]. 

Thus, the mechanical activation causes the intensive 
remixing of a substance on the atomic level. It seems 
that deformation mixing is common for all mech- 
anochemical processes, but their effects are defined by 
initial structure and chemical bond type. The result of 
mechanical treatment is not defined by the intensity of 
the action alone. The other important factor control- 
ling this process is the possibility of the starting 
material stabilizing the structural disruptions caused 
by reconstruction of several immediate coordination 
spheres. 

The time and space scales (10 6-10-8  S, 100-2000 
A) of mechanical activation processes strongly hamper 
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their direct experimental study. Therefore, the possi- 
bility of modeling the behavior of atomic ensembles 
under mechanical action using the molecular dynamic 
method is very promising. 

Butjagin and co-workers [6] have made preliminary 
attempts to carry out such a simulation. It was shown 
that during the intensive plastic deformation the initial 
substance degrades into small clusters about 10 inter- 
atomic distances in diameter. These clusters conserve 
the initial structure inside the clusters, being fully 
amorphized on the boundaries. But the quantitative 
characteristics of processes under study in this and 
other works devoted to computer modeling are quite 
lacking. We concentrate our attention on revealing the 
macroscopic characteristics for the simplest model to 
compare them later with available experimental re- 
sults. 

2. Computation model 

The classical equations of motion 1600 (40 x 40) 
particles under periodic boundary conditions were 
integrated in the conventional manner using the sec- 
ond-order Euler algorithm. 

As parameters of the pair potential 

~ j  = 4e( (o_ / ru )  ,2 _ (~r / ru)  6) (1) 

we have chosen the values: or = 3.405 ,~,; e = 119.6 K, 
particle mass m = 6.24 x 10  -26 kg, which correspond to 
potential parameters and the atomic mass of liquid 
argon. Potential was set at r = 2.25 o-. 

Hereafter  the following arbitrary units shall be used: 
t i m e  (mo'2/~) 1/2 = 2,09 X 10 -12 s, velocity v = o'/t = 156 
m s -x, pressure p = e/o -3 = 4.18 X 107 N m-2; distance 
and energy are expressed in corresponding parameters 
of potential. 

The time step At = 0.008 has been chosen as suffi- 
ciently good; the total energy error was typically less 
then 0.1%. The value of the average period of atomic 
oscillations (obtained from the velocity autocorrelation 
function) is equal to t o = 0.4 (8 X 10 -13 s). 

The deformation procedure was simulated as fol- 
lows. 

The periodically copied computation unit consisting 
of 1600 close-packed particles covers the two-dimen- 
sional space by uniform blocks. In this virtual system 
one can produce a shear deformation by shear flow- 
like displacement of computation unit copies as rigid 
bricks in the X direction. We set the velocity, V s of the 
relative displacement of the blocks constant. In this 
mode of deformation the distortions inside the compu- 
tational unit are caused by movement of neighboring 
blocks. 

In the process of computations the atom is free to 

leave the computation unit through the border. In 
conventional periodic boundary conditions at this 
moment the atom coordinates change from X i, Y, to 
X i _+(Lx,0) (if the atom crosses the Y boundary) and 
Yi = +(0,Ly) (if the atom crosses the Y boundary). In 
our case the conditions of jump along X are the same 
but the vector determining the atom jump along the Y 
axis is taken as+_(Vst, Ly). In such a method the 
sequence of checking of the atoms' movement through 
the border is of importance: at first we need to analyze 
the boundary conditions P0 along the Y axis. 

The Y dimension of the computational unit was 
taken as constant. We provided isobaric conditions for 
pressure P0 along the X axis. 

This procedure allows the modeling of dynamic 
processes of shear deformation progress in a "surface- 
less" sample, that is to remove the surface influence as 
a possible source of structure defects (dislocations). 
But in periodic conditions the system is closed upon 
itself. This condition cuts the upper value of the 
dislocation's lifetime. For example, two dislocations of 
opposite charge appear in one plane (in one line in 
two dimensions), move apart, cross the corresponding 
boundaries, return in unit from the opposite sides, 
move together in one plane, meet and annihilate. 

All the deformation experiments were conducted 
under isothermal conditions. The velocity of all par- 
ticles lying in the layer 3or wide near the Y border was 
renormalized at every time step to provide an energy 
of particle motion equal to E = 0.15 arb.u. The melting 
temperature of our system obtained from melting 
modeling is equal to 0.51 arb.u with P0 = 1.0. 

With the parameter Po = 1.0 shear velocity V s lies in 
the interval from 3 m s-1 to 45 m s -1, which allows a 
deformation velocity in the range from 0.21 x 108 to 
3.19 x 108 s -1. At first moment the system axially 
stressed along the Y axis by 0-3%. Thus we have 
conditions of axial stress and shear. 

To make the data more representative the modeling 
results were accumulated and averaged over 10 runs. 

From the axial deformation experiments the elastic 
characteristics of the system were determined: stress 
modulus equal to K=30.4-+0.5  arb.units, shear 
modulus/z  = 17.0 _+ 0.5 arb.units. The velocities of the 
elastic wave's propagation (sound velocity) were calcu- 
lated from the elastic characteristics: CI = 7.55 arb.u. 
(1177 m s  '), C t = 4.12 arb.u. (643 m s-Z). 

3. The process of deformation 

One could describe the qualitative picture of model- 
ing process as shown in Fig. 1 and Fig. 2 as a 
dependence of the system's total energy and pressure 
tensor components 
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Fig.  2. T h e  s t r a i n  t e n s o r  c o m p o n e n t s  as  a f u n c t i o n  o f  d e f o r m a t i o n .  

P~, = 1,'V. vi oi + -~ Z + ri~(~fI~iy/~ri~ (2) 
i~j 

on shear deformation ~ ,=Lyx /Ly .  Preliminarily we 
have squeezed the model by 3% along the Y axis from 
the equilibrium state (with isotropic external pressure 
P = 1.0 arb.units). Shear velocity V~ was determined as 
V, = 0.02 arb.units (about 3 m s -1) causing the de- 
formation rate d e / d t  = 0.21 × 108 s -1 

Commonly the process proceeds through three main 
stages. At first (1 on Fig. 1), the deformation is 
maintained in an elastic manner, the energy stored in 

the system in the form of particle interaction energy. 
When the deformation value approaches 7-10%, the 
homogenous birth of dislocation pairs occurs (2), 
dislocations start the very fast (with velocity about that 
of sound) motion and discharge the inner system 
stresses after about 10 -l° s. After this the system 
transfers to the quasistationary state of plastic flow (3). 
The shear stress value of homogenous dislocation birth 
is equal to Pcr = 3 arb.u. ~ #/6,  which corresponds to 
the theoretical limit of strength. 

Depending on the action intensity in the model 
(defined in our case by shear velocity V~ ) the number 
of structure disruptions and dislocations appearing 
may be different. In order to quantitatively describe 
the amount of dislocations we calculate at every time 
step the number of nearest neighbour atoms for each 
particle as the number of particles lying in a circle with 
radius 

R = 1/2(R, + R2) (3) 

where R l and R 2 a r e  the radiuses of first and second 
coordinate spheres. As shown in Ref. [9], that number 
statistically matches the number of nearest neighbours 
defined by Voronoi polyhedra analysis. 

In Fig. 3 the number of particles in perfect crys- 
talline surroundings (six nearest neighbors) is pre- 
sented for different deformation rates (a) and different 
initial axial stress (b). As would be expected the more 
intensive the mechanical action is the greater the 
amount of structure disruptions. One could see that 
the typical disruption's value is about several percent. 
One could take the number of dislocations at stage (3) 
as the number of particles in imperfect sites divided by 
two: every dislocation typically contains two atoms 
with five-fold surrounding. The maximum number 
obtained is equal to 1016 dislocations per square 
meter. 

The structural disruptions have a dynamic nature: 
after relatively large structure disordering at stage (2) 
the imperfection's value relaxes to equilibrium at stage 
(3). This is an equilibrium between outer disordered 
action defined by shear velocity in our case and inner 
relaxation controlled by the initial structures' capacity 
for movement of their basic building elements. 

In order to obtain quantitative characteristics of this 
kind of relaxation we have performed the following 
experiment. We have cooled our system from the 
melted phase to a temperature about 0.15 arb.units 
(the temperature of the main deformation experi- 
ments). In this cooled system we observe the number 
of particles in perfect crystalline site as a function of 
time. When this number is less than about 10% of the 
total particle amount then the structural imperfections' 
relaxation is described well as 

C = 1 - exp(-t /T) (4) 
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Fig. 3. (a) The concentration of atoms with perfect neighbour for 
different deformation rates 0.21 (1), 0.42 (2,) 1.59 (3) and 3.19 × 10 ~ 
(4) s -1. (b) The concentration of atoms with perfect neighbour for 
different preliminary axial stresses: 0, 1, 2, 3 percent, deformation 
rate 0.21 × 10 ~ s 1 

where C is the concentration of particles in perfect 
crystalline site, ~- is relaxation time, ~- = 2.02 × 10 -~° s. 
This very small time value means that all structural 
disruptions have relaxed before one could observe 
them by any experimental method. 

One could compare this behavior of the model 
system with the plastic deformation of thin copper 
monocrystals ("whiskers") described, for example, in 
Refs. [7,8]. They show the same (peak-like) character 
of deformation development  that one could see in our 
model. After  the initiation of fast homogenous disloca- 
tions at a stress value close to the theoretical limit of 
strength, the thin whiskers flow plastically. From the 
inner friction data one could observe the relaxation of 
the large amount  of dislocation which appeared at first 
to be the equilibrium value. 

We must note that in Figs. 1 and 2 we have shown 
"the best" case of the process maintenance. This 
plato-like character of the time evolution ensured that 
the dislocations arising have the possibility of moving 

in different planes of sliding. In other cases with 
different starting conditions (preliminary squeezing 
along the Y axis, for example) the stress field in the 
model is insufficient for this kind of dislocation mo- 
tion. As described above we have a "closed model"  
which enables the dislocations to disappear in a short 
time and one could see at stage 3 many less intensive 
peaks as at stage 2 (Fig. 3(b)). We suggest that at low 
stress intensities the model designed does not describe 
real processes properly. 

The microscopic picture of atomic motion at the 
stage of plastic flow could be described as follows. 

In the substance under action at every moment  one 
could see the regions with which the atoms' movement  
correlated (Fig. 4). These regions are involved in the 
relative displacements and rotations. The dividing of 
the inner volume of the model into these regions has a 
temporal  character: one cluster with about 100 atoms 
has a lifetime of about 10 atomic oscillations (10 -~2 s). 
In spite of the whirl-like picture of atomic displace- 
ments at every moment,  the particles as a whole move 
in an orderly fashion which causes uniform shear 
deformation. This indicates that the microdisplace- 
ments and microrotations of small regions of the 
substance develop in time in a mutual relationship. 

On deformation development the energy loaded 
into the system is transformed to heat. The main 
source of heat generated in our case is dislocations in 
movement.  The observed dislocation's velocity may be 
very high: about the velocity of sound. In order  to 
determine the details of heat dissipation by this kind 
of dislocation we performed the following calculations. 

We created a single dislocation in periodic boundary 
conditions along the X direction. After  this we loaded 
the system. Then we calculated the average kinetic 
energy of particles around the moved dislocation in a 
system of coordinates of the dislocation core. The core 
was determined as the arithmetic average of coordi- 
nates of atoms having five or seven nearest neigh- 
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Fig. 4. Particle displacement traces averaged over 10 ~' s. 
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Fig. 5. Outline of the mean kinetic energy of the particle field. The 
core of di~;location is placed at the zero point of the coordinate 
system. The dislocation moves from left to right. Each point on the 
axis corresponds to one interatomic distance. 

bours. At the Y boundaries the temperature T = 0.1 
arb.units was established. The schema of the obtained 
average kinetic energy fields is plotted in Fig. 5. The 
dislocation is placed in the zero point of the coordi- 
nate's system and moves from the left to the right. The 
two peaks with the value of 0.37 and 0.35 arb.units 
correspond to two nearest (to core) atoms in the 
atomic plane that move to the region of low density. 
The hea: track follows the dislocation movement and 
is spread about to six interatomic distances. We must 
note thaL this track is turned from the line of disloca- 
tion movement by an angle about 30-40 ° to the lower 
density direction. This may be caused by lowering the 
elastic wave propagation rate in regions with lower 
density and as a result decreasing the heat conductivi- 
ty. 

4. Conclusion 

We have performed a quantitative investigation of 
model system behavior in shear and axial pressure 

conditions. The microscopic picture of plastic flow in 
our system could be described as proceeding through 
decomposition of perfect structure on clusters in 
dimensions about 10-20 interatomic distances. The 
clusters move and rotate, which provides the stress 
field relaxation and causes the structure disruption. 

The plastic deformation carrier, i.e. the dislocations, 
acts as point heat sources in the energy dissipation 
processes. 

Thus the macroscopic internal action is transformed 
into local microscopic energy release processes 
through (i) the defect generation and (ii) local heat 
dissipation by the generated and moving imperfec- 
tions. 
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